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Abstract
Novikov algebras were introduced in connection with the Poisson brackets
of hydrodynamic-type and Hamiltonian operators in the formal variational
calculus. For further our understanding and physical applications, we give
a classification of Novikov algebras in dimensions two and three in this paper.

PACS numbers: 0210, 0230

1. Introduction

One remarkable feature of Hamiltonian operators is their connection with certain algebraic
structures [1–8]. Gel’fand and Dikii introduced a formal variational calculus and found
certain interesting Poisson structures when they studied Hamiltonian systems related to certain
nonlinear partial differential equations, such as KdV equations [1, 2]. In [3], Gel’fand
and Dorfman found more connections between Hamiltonian operators and certain algebraic
structures. Dubrovin, Balanskii and Novikov studied similar Poisson structures from another
point of view [4–6]. One of the algebraic structures appearing in [3, 6], which is called a
‘Novikov algebra’ by Osborn [9–13], was introduced in connection with the Poisson brackets
of hydrodynamic type.

A Novikov algebra A is a vector space over a field K with a bilinear product (x, y) → xy

satisfying

(x1, x2, x3) = (x2, x1, x3) (1.1)

and

(x1x2)x3 = (x1x3)x2 (1.2)

for x1, x2, x3 ∈ A, where

(x1, x2, x3) = (x1x2)x3 − x1(x2x3). (1.3)

Novikov algebras are a special class of left-symmetric algebras which only satisfy
equation (1.1). Left-symmetric algebras are non-associative algebras arising from the study
of affine manifolds, affine structures and convex homogeneous cones [14–19].
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The commutator of a Novikov algebra (or a left-symmetric algebra) A

[x, y] = xy − yx (1.4)

defines a Lie algebra G = G(A). Let Lx, Rx denote the left and right multiplication,
respectively, i.e. Lx(y) = xy, Rx(y) = yx, ∀x, y ∈ A. Then for a Novikov algebra, the
left multiplication operators form a Lie algebra and the right multiplication operators are
commutative.

Novikov asked whether there exist simple Novikov algebras (i.e. ones which contain no
ideas except the zero ideal, itself and AA �= 0). Zel’manov proved that a finite-dimensional
simple Novikov algebra over an algebraically closed field with characteristic 0 is a field [20].
Osborn and Xu gave a complete classification of finite-dimensional simple Novikov algebras
over an algebraically closed field with prime characteristic. They also found several classes
of infinite-dimensional simple Novikov algebras [9–13].

Moreover, Zel’manov gave a fundamental structure theory of a finite-dimensional Novikov
algebra over an algebraically closed field with characteristic 0 [20]: a Novikov algebra A is
called right-nilpotent or transitive if every Rx is nilpotent. Then by equation (1.2), a finite-
dimensional Novikov algebra contains the largest transitive ideal N(A) and the quotient algebra
A/N(A) is a direct sum of fields. The transitivity corresponds to the completeness of the affine
manifolds in geometry [14, 15].

Therefore, it is necessary to understand the structures and properties of transitive Novikov
algebras in detail. This is still an open question, which is obviously quite difficult. Moreover,
even if we can obtain some classifications of transitive Novikov algebras, we are still far from
the complete classification of Novikov algebras. One of the most important reasons for this is
that, unlike associative algebras, the extension by N(A) is not non-essential in general. There
can exist many non-isomorphic extensions. Recall that A is an extension of C by B if there
exists an ideal R of A which is isomorphic to B and the quotient algebra A/R is isomorphic
to C. If there exists a subalgebra H of A such that R ∩ H = {0} and A = R + H , then this
extension is called a non-essential extension, otherwise it is called an essential extension. If,
in addition, H is an ideal of A, then the extension is called a trivial extension.

In this paper, we give a classification of Novikov algebras over the complex field in
dimensions two and three. As in the study of other algebras, while some special cases are
understood, the full structure theory of Novikov algebras is yet to be developed. The study of
the low-dimensional cases will serve as a guide for further development.

The paper is organized as follows. Section 2 gives the classification of two-dimensional
Novikov algebras. Section 3 describes the classification of transitive Novikov algebras in
dimension three. Section 4 describes the classification of non-transitive Novikov algebras in
dimension three. In section 5 we give our discussion for the classifications used in the previous
sections.

2. Two-dimensional Novikov algebras

Let {ei} be a basis of a Novikov algebra A. Set Aij = eiej = ∑n
k=1 ak

ij ek . Then the (form)
characteristic matrix A = (Aij ), i.e.

A =




n∑
k=1

ak
11ek · · ·

n∑
k=1

ak
1nek

· · · · · · · · ·
n∑

k=1

ak
n1ek · · ·

n∑
k=1

ak
nnek


. (2.1)
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Table 1. The classification and some basic properties of two-dimensional Novikov algebras.

Characteristic matrix Associativity Lie algebra G(A) N(A) Ext. by N(A)

(T1)

(
0 0
0 0

)
Associative Abelian A = N(A) Transitive

(T2)

(
e2 0
0 0

)
Associative Abelian A = N(A) Transitive

(T3)

(
0 0

−e1 0

)
Non-associative [e1, e2] = e1 A = N(A) Transitive

(N1)

(
e1 0
0 e2

)
Associative Abelian N(A) = {0} A ∼= C ⊕ C

(N2)

(
e1 0
0 0

)
Associative Abelian (T0) Trivial

(N3)

(
e1 e2
e2 0

)
Associative Abelian (T0) Non-essential

(N4)

(
0 e1
0 e2

)
Associative Isomorphic to (T3) (T0) Non-essential

(N5)

(
0 e1
0 e1 + e2

)
Non-associative Isomorphic to (T3) (T0) Essential

(N6)

(
0 e1

le1 e2

)
l �= 0, 1

Non-associative Isomorphic to (T3) (T0) Non-essential

There are two Novikov algebras in dimension one: the complex field C = {Ce|ee = e}
and the one-dimensional trivial Novikov algebra (T0) = {Ce|ee = 0}. In [17, 19], the
classification of two-dimensional left-symmetric algebras is given. Then by the condition
Re1Re2 = Re2Re1 , we can obtain the classification of two-dimensional Novikov algebras given
in table 1.

3. Three-dimensional transitive Novikov algebras

Let A be a three-dimensional transitive Novikov algebra. By Engel’s theorem, there exists
a basis {e1, e2, e3}, such that Re1 , Re2 , Re3 can be put into strictly upper triangular matrices
simultaneously, that is, we can assume

Re1 =
( 0 a1 b1

0 0 c1

0 0 0

)
Re2 =

( 0 a2 b2

0 0 c2

0 0 0

)
Re3 =

( 0 a3 b3

0 0 c3

0 0 0

)
. (3.1)

By the commutativity of Rei
and Rej

, we have

a1c2 = a2c1 a2c3 = a3c2 a1c3 = a3c1. (3.2)

Thus, we have

c1 = c2 = c3 = 0 (3.3)

or we can assume

a1 = tc1 a2 = tc2 a3 = tc3. (3.4)



1584 C Bai and D Meng

Through equation (1.1), we have the following equations:

(e1, e3, e1) = (e3, e1, e1) �⇒ a1c1 = 0 (3.5)

(e1, e3, e2) = (e3, e1, e2) �⇒ a2c1 = 0 (3.6)

(e1, e3, e3) = (e3, e1, e3) �⇒ a3c1 = 0 (3.7)

(e2, e3, e1) = (e3, e2, e1) �⇒ a1c2 + a2c1 = 0 (3.8)

(e2, e3, e2) = (e3, e2, e2) �⇒ a2b1 − a1b2 − 2a2c2 = 0 (3.9)

(e2, e3, e3) = (e3, e2, e3) �⇒ a3b1 − a1b3 − a2c3 − a3c2 = 0. (3.10)

The relations for other items hold automatically. So the problem turns into one of how to
determine the above parameters and the isomorphic classes of Novikov algebras that they
define. From equations (3.3) and (3.4), we know {ai, bi, ci} must be in the following cases.

Case (I). t = 0. We will show that this implies a1 = a2 = a3 = 0.

Case (II). c1 = c2 = c3 = 0.

Case (III). One of ai and one of cj are not zero.

Next we discuss these three cases.

Case (I). This is the case where equation (3.4) holds and t = 0. Thus we have a1 = a2 =
a3 = 0. One verifies that equations (3.5)–(3.10) hold in this case. It is easy to see that the
linear subspace V spanned by e1 and e2 is a trivial ideal. Hence V is stable under Le3 . Then
we can choose a new basis in V such that under this new basis Le3 becomes

Le3 =
(

b′
1 0

0 c′
2

)
or Le3 =

(
b′

1 1
0 b′

1

)
. (3.11)

The former shows that we can assume c1 = b2 = 0, and the latter case shows that we can
assume b1 = c2, c1 = 0, b2 = 1. Next we discuss these two cases.

Case (I-1). The characteristic matrix is( 0 0 0
0 0 0

b1e1 c2e2 b3e1 + c3e2

)
.

(i) b1 = c2 = b3 = c3 = 0. We have type (A1)

( 0 0 0
0 0 0
0 0 0

)
.

(ii) b1 = c2 = 0; b3 �= 0 or c3 �= 0. Let e1 → b3e1 + c3e2, we have type (A2)

( 0 0 0
0 0 0
0 0 e1

)
.
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(iii) b1 = 0, c2 �= 0. Let e3 → 1
c2

e3, we can assume c2 = 1.

(1) b3 = c3 = 0. We have type (A9)( 0 0 0
0 0 0
0 e2 0

)
.

(2) b3 �= 0, c3 = 0. Let e1 → b3e1, we have type (A10)( 0 0 0
0 0 0
0 e2 e1

)
.

(3) b3 = 0, c3 �= 0. Let e3 → e3 − c3e2, then this is case (I-1-iii-1).
(4) b3 �= 0, c3 �= 0. Let e1 → b3e1; e3 → e3 − c3e2, then this is case (I-1-iii-2).

(iv) b1 �= 0, c2 = 0. Let e1 → e2, e2 → e1, then this is case (I-1-iii);
(v) b1 �= 0, c2 �= 0. Let e3 → 1

b1
e3 − b3

b2
1
e1 − c3

b1c2
e2, then (non-zero products)

e3e1 = e1 e3e2 = c2

b1
e2 e3e3 = 0.

If | c2
b1

| > 1, then after letting e1 → e2, e2 → e1, e3 → b1
c2

e3, we can assume |l| � 1, l �= 0,
where l = c2

b1
. Thus we have type (A11)

( 0 0 0
0 0 0
e1 le2 0

)

with |l| � 1, l �= 0.

Case (I-2). The characteristic matrix is( 0 0 0
0 0 0

b1e1 e1 + b1e2 b3e1 + c3e2

)
.

(i) b1 = 0. Let e3 → e3 − b3e2, we can assume b3 = 0.

(1) c3 = 0. Let e2 → e2 + e3, e3 → −e3 + e2, we have( 0 0 0
0 e1 e1

0 −e1 −e1

)

which is type (A6) (see case (II-2-i-2)) with l = −1;
(2) c3 �= 0. Let e2 → c3e2, we have type (A8)( 0 0 0

0 0 0
0 e1 e2

)
.

(ii) b1 �= 0. Let e1 → 1
b1

e1, e3 → 1
b1

e3 +
(

c3

b3
1
− b3

b2
1

)
e1 − c3

b2
1
e2, we have type (A12)

( 0 0 0
0 0 0
e1 e1 + e2 0

)
.
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Case (II). This is the case where equation (3.3) holds. One can easily show that
equations (3.5)–(3.8) hold. From equations (3.9) and (3.10), we have

a2b1 = a1b2 a3b1 = a1b3. (3.12)

The characteristic matrix is( 0 0 0
a1e1 a2e1 a3e1

b1e1 b2e1 b3e1

)
.

We can assume one of ai is not zero.

Case (II-1). b1 = b2 = b3 = 0. Let e2 → e3, e3 → e2, Then we can see this is in case (I),
i.e. a1 = a2 = a3 = 0.

Case (II-2). b1 = 0, and one of b2 and b3 is not zero: by equation (3.12), we have
a1b2 = a1b3 = 0. Hence a1 = 0, otherwise b2 = b3 = 0. Note a2 �= 0 or a3 �= 0 by
our assumption.

(i) a2 �= 0. Let e1 → a2e1, then the characteristic matrix can be written as

( 0 0 0
0 e1 a3e1

0 b2e1 b3e1

)
.

(1) a3 = b2. Let e3 → e3 −b2e2, we can assume a3 = b2 = 0. Thus, by our assumption,
b3 �= 0. Let e3 → √

b3e3, we have type (A3)( 0 0 0
0 e1 0
0 0 e1

)
.

(2) a3 �= b2. Let e3 → 2
a3−b2

e3 − a3+b2
a3−b2

e2, we have type (A6)( 0 0 0
0 e1 e1

0 −e1 le1

)

where

l = 4b3 − (a3 + b2)
2

(a3 − b2)2
.

(ii) a2 = 0. We can assume b3 = 0, otherwise, after letting e2 → e3, e3 → e2, this case is
changed into case (II-2-i).

(1) a3 = −b2 �= 0. Let e2 → e2 + e3, e3 → 1
2a3

(e3 − e2), we have type (A5)( 0 0 0
0 0 e1

0 −e1 0

)
.

(2) a3 + b2 �= 0. Let e2 → e2 + e3, then this is in case (II-2-i).
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Case (II-3) b1 �= 0.

(i) b2 = 0. Then by equation (3.12), a2 = 0. Moreover, a1 �= 0, otherwise a1 = a2 = a3 = 0.

(1) a3 = 0. By equation (3.12), b3 = 0. Let e1 → e2 − a1
b1

e3, e2 → e1, e3 → 1
b1

e3, this
is case (I-1-iii-1), i.e. type A(9).

(2) a3 �= 0. Let e2 → e2 − a1
b1

e3. Since b3
a3

= b1
a1

�= 0, this is in case (I).

(ii) b2 �= 0. If b3 = 0, then by equation (3.12), we have a3 = 0. Moreover, a1 �= 0, a2 �= 0,
otherwise a1 = a2 = a3 = 0. Let e3 → e2, e2 → e3, this is in case (I) since b1

a1
= b2

a2
�= 0.

If b3 �= 0, then a1 �= 0, a2 �= 0, a3 �= 0, otherwise a1 = a2 = a3 = 0. Let e2 → e2 − a1
b1

e3,

this is still in case (I) since b1
a1

= b2
a2

= b3
a3

�= 0.

Case (III). This is the case where equation (3.4) holds and t �= 0, and one of ci is not zero.
And one of ai is not zero, too. Then we have c1 = 0 by equations (3.5)–(3.7). Hence a1 = 0
and b1 = 2c2 by equation (3.4) and equations (3.8)–(3.10). We assume ci cannot be zero at
all.

Case (III-1) c2 = b1 = 0. In this case, we have a2 = 0 by equation (3.4) and c3 �= 0 by our
assumption. Let e1 → tc3e1, the characteristic matrix can be assumed to be( 0 0 0

0 0 e1

0 b2e1 b3e1 + c3e2

)
.

(i) b2 �= −1. Let e3 → e3 − b3
b2+1e2, e2 → c3e2, then the characteristic matrix can be written

as ( 0 0 0
0 0 e1

0 b2e1 e2

)
.

We divide them into two classes: associative case only and only if b2 = 1, which is
type (A4) ( 0 0 0

0 0 e1

0 e1 e2

)

and non-associative case only and only if b2 �= 1, which is type (A7)( 0 0 0
0 0 e1

0 le1 e2

)

with l = b2 �= 1, −1.
(ii) b2 = −1. Let e1 → c3e1, e2 → c3e2 + b3e1, we have( 0 0 0

0 0 e1

0 −e1 e2

)

which is type (A7) with l = −1.
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Table 2. The classification and some basic properties of three-dimensional transitive Novikov
algebras.

Characteristic matrix Associativity Lie algebra G(A) Remark

(A1)

( 0 0 0
0 0 0
0 0 0

)
Associative Abelian (T0) ⊕ (T1)

(A2)

( 0 0 0
0 0 0
0 0 e1

)
Associative Abelian (T0) ⊕ (T2)

(A3)

( 0 0 0
0 e1 0
0 0 e1

)
Associative Abelian

(A4)

( 0 0 0
0 0 e1
0 e1 e2

)
Associative Abelian

(A5)

( 0 0 0
0 0 e1
0 −e1 0

)
Associative

[e2, e1] = 0
[e3, e1] = 0
[e3, e2] = e1

(A6)

( 0 0 0
0 e1 e1
0 −e1 le1

)
Associative Isomorphic to (A5)

(A7)

( 0 0 0
0 0 e1
0 le1 e2

)

l �= 1

Non-associative Isomorphic to (A5)

(A8)

( 0 0 0
0 0 0
0 e1 e2

)
Non-associative Isomorphic to (A5)

(A9)

( 0 0 0
0 0 0
0 e2 0

)
Non-associative

[e2, e1] = 0
[e3, e1] = 0
[e3, e2] = e2

(T0) ⊕ (T3)

(A10)

( 0 0 0
0 0 0
0 e2 e1

)
Non-associative Isomorphic to (A9)

(A11)

( 0 0 0
0 0 0
e1 le2 0

)

|l| � 1, l �= 0

Non-associative

[e2, e1] = 0
[e3, e1] = e1

[e3, e2] = le2

|l| � 1, l �= 0

(A12)

( 0 0 0
0 0 0
e1 e1 + e2 0

)
Non-associative

[e2, e1] = 0
[e3, e1] = e1

[e3, e2] = e1 + e2

(A13)

( 0 0 0
0 e1 0
e1

1
2 e2 0

)
Non-associative

[e2, e1] = 0
[e3, e1] = e1

[e3, e2] = 1
2 e2

G(A) is (A11)

with l = 1
2

Case (III-2) b1 = 2c2 �= 0. Let e1 → tc2e1, e3 → 1
2c2

e3 − b3

4c2
2
e1, then the characteristic

matrix can be written as
 0 0 0

0 e1 c3 !/ e1

e1 b2 !/ e1 + 1
2e2

c3 !/
2 e2




where b2 !/ = b2
2c2

, c3 !/ = c3

2c2
2
.
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(i) c3 !/ = 0.

(1) b2 !/ = 0. We have type (A13),( 0 0 0
0 e1 0
e1

1
2e2 0

)
.

(2) b2 !/ �= 0. Let e2 → b2 !/ e2 − 2b2 !/ 2e1, e1 → b2 !/ 2e1, then it is isomorphic to
type (A13).

(ii) c3 !/ �= 0. Let e3 → e3 + b2 !/ c3 !/ e1 − c3 !/ e2, then

e2e3 = e3e3 = 0 e2e3 = (b2 !/ − c3 !/ )e1 + 1
2e2 e1e3 = 0 e3e1 = e1.

This is in case (III-2-i).

We summarize the above results in table 2. In the second and the third columns, we
indicate the associativity of the algebra and the structure of the Lie algebra G(A). One can
show the algebras in the table that are mutually non-isomorphic.

4. Three-dimensional non-transitive Novikov algebras

Using the introduction, we discuss the three-dimensional non-transitive Novikov algebras in
the following cases: the cases N(A) = {0}, N(A) = (T0), N(A) = (T1), N(A) = (T2) and
N(A) = (T3), respectively.

Case (1) N(A) = {0}. In this case, there is only one Novikov structure, that is, the direct
sum of the fields

A = C ⊕ C ⊕ C. (4.1)

Case (2) N(A) = (T0). We can choose a basis e1, e2, e3 such that

e1e1 = 0 e1ei = a1ie1 eie1 = ai1e1 eiej = δij ei + aij e1 i = 2, 3 (4.2)

where δij = 1 if i = j and δij = 0 if i �= j . Then we have

Re1Re2 = Re2Re1 �⇒ (a12 − 1)a21 = 0 a31a12 = 0 (4.3)

Re1Re3 = Re3Re1 �⇒ (a13 − 1)a31 = 0 a21a13 = 0 (4.4)

Re2Re3 = Re3Re2 �⇒ (a12 − 1)a23 = a13a22 (a13 − 1)a32 = a12a33 (4.5)

(e1, e2, e2) = (e2, e1, e2) �⇒ a2
12 = a12 (4.6)

(e1, e2, e3) = (e2, e1, e3) �⇒ a12a13 = 0 (4.7)

(e1, e3, e3) = (e3, e1, e3) �⇒ a2
13 = a13 (4.8)

(e2, e3, e2) = (e3, e2, e2) �⇒ a23a23 − a21a32 = a32a12 − a32 − a22a31 (4.9)

(e2, e3, e3) = (e3, e2, e3) �⇒ a13a32 − a23a31 = a23a13 − a23 − a21a33. (4.10)

The relations for other items hold automatically. Using the same method as in section 3, we
can give the classification in table 3.
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Table 3. The classification and some basic properties of three-dimensional Novikov algebras with
N(A) = (T0).

Characteristic matrix Associativity Lie algebra G(A) Ext. by N(A) Remark

(B1)

( 0 0 0
0 e2 0
0 0 e3

)
Associative Abelian Trivial (N2) ⊕ C

(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
Associative Abelian Non-essential (N3) ⊕ C

(B3)

( 0 0 e1
0 e2 0
0 0 e3

)
Associative Isomorphic to (A9) Non-essential (N4) ⊕ C

(B4)

( 0 0 e1
0 e2 0
0 0 e1 + e3

)
Non-associative Isomorphic to (A9) Essential (N5) ⊕ C

(B5)

( 0 0 e1
0 e2 0

le1 0 e3

)

l �= 0, 1

Non-associative Isomorphic to (A9) Non-essential (N6) ⊕ C

Case (3) N(A) = (T1). We can choose a basis e1, e2, e3 such that

e1e1 = e1e2 = e2e1 = e2e2 = 0 e3e3 = e3 + a33e1 + b33e2

eie3 = ai3e1 + bi3e2 e3ei = a3ie1 + b3ie2 i = 1, 2.
(4.11)

Then we have

Re1Re3 = Re3Re1 �⇒ a13a32 + a23b32 = a32 a32b13 + b23b32 = b32 (4.12)

Re2Re3 = Re3Re2 �⇒ a13a31 + a23b31 = a31 a31b13 + b23b31 = b31. (4.13)

By the relation (e1, e3, e3) = (e3, e1, e3), we have

a2
13 + a23b13 − a13 = a23b31 − a32b13

b13(a13 + b23 − a31 + b32 − 1) = b31(b23 − a13).
(4.14)

By the relation (e2, e3, e3) = (e3, e2, e3), we have

b2
23 + a23b13 − b23 = a32b13 − a23b31

a23(a13 + b23 + a31 − b32 − 1) = a32(−b23 + a13).
(4.15)

The relations for other items hold automatically. However, the above equations are still
complicated. Note that N(A) is an ideal of A, thus N(A) is a stable subspace of the linear
transformations Le3 and Re3 . Because the field is complex by our supposition, there exists
e′

1, e
′
2 ∈ N(A), such that

e3e
′
1 = αe′

1 e′
2e3 = βe′

2. (4.16)

Hence by a linear transformation e1 → e′
1, e2 → e′

2, we can suppose that b31 = a23 = 0. So
equations (4.12)–(4.15) become

(a13 − 1)a32 = (a13 − 1)a31 = a32(a13 − b23) = b13a31 = 0 (4.17)

−a13(a13 − 1) = b23(b23 − 1) = −b32(b23 − 1) = b13a32 (4.18)

b13(a13 + b23 − a31 + b32 − 1) = 0. (4.19)

Using the same method as in section 3, we can give the classification in table 4.
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Table 4. The classification and some basic properties of three-dimensional Novikov algebras with
N(A) = (T1).

Characteristic matrix Associativity Lie algebra G(A) Ext. by N(A) Remark

(C1)

( 0 0 0
0 0 0
0 0 e3

)
Associative Abelian Trivial (N2) ⊕(T0)

(C2)

( 0 0 e1
0 0 0
e1 0 e3

)
Associative Abelian Non-essential (N3) ⊕ (T0)

(C3)

( 0 0 e1
0 0 0
0 0 e3

)
Associative Isomorphic to (A9) Non-essential (N4) ⊕ (T0)

(C4)

( 0 0 e1
0 0 0
0 0 e1 + e3

)
Non-associative Isomorphic to (A9) Essential (N5) ⊕ (T0)

(C5)

( 0 0 e1
0 0 0

le1 0 e3

)

l �= 0, 1

Non-associative Isomorphic to (A9) Non-essential (N6) ⊕ (T0)

(C6)

( 0 0 e1
0 0 e2
e1 0 e3

)
Associative Isomorphic to (A9) Non-essential

(C7)

( 0 0 e1
0 0 e2
e1 0 e3 + e2

)
Non-associative Isomorphic to (A9) Essential

(C8)

( 0 0 e1
0 0 e2
0 0 e3

)
Associative

[e2, e1] = 0
[e3, e1] = e1

[e3, e2] = e2

Non-essential
G(A) is (A11)

with l = 1

(C9)

( 0 0 e1
0 0 e2

le1 0 e3

)

l �= 1, 0

Non-associative

[e2, e1] = 0
[e3, e1] = le1

[e3, e2] = e2

|l| � 1, l �= 0, 1

Non-essential
G(A) is (A11)

with l �= 1

(C10)

( 0 0 e1
0 0 e2

le1 0 e3 + e2

)

l �= 1

Non-associative Isomorphic to (A11) Essential

(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
Associative Abelian Non-essential

(C12)

( 0 0 e1
0 0 e2
e1 le2 e3

)

l �= 0, 1

Non-associative Isomorphic to (A9) Non-essential

(C13)

( 0 0 e1
0 0 e2

le1 ke2 e3

)

l, k �= 1, 0

Non-associative Isomorphic to (A11) Non-essential

(C14)

( 0 0 e1
0 0 e2
e1 e1 + e2 e3

)
Non-associative Isomorphic to A(5) Non-essential

(C15)

( 0 0 e1
0 0 e2

le1 e1 + le2 e3

)

l �= 1, 0

Non-associative Isomorphic to (A12) Non-essential

(C16)

( 0 0 e1
0 0 e2
0 e1 e3

)
Non-associative Isomorphic to A(12) Non-essential
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Table 4. Continued.

Characteristic matrix Associativity Lie algebra G(A) Ext. by N(A) Remark

(C17)

( 0 0 e1
0 0 e2
0 e1 e3 + e2

)
Non-associative Isomorphic to A(12) Essential

(C18)

( 0 0 e1 + e2
0 0 e2
0 −e2 e3

)
Non-associative Isomorphic to A(13) Non-essential

(C19)

( 0 0 e1 + e2
0 0 e2
0 −e2 e3 + e1

)
Non-associative Isomorphic to A(13) Essential

Case (4) N(A) = (T2). We can choose a basis e1, e2, e3 such that

e1e2 = e2e1 = e2e2 = 0 e1e1 = e2 e3e3 = e3 + a33e1 + b33e2

eie3 = ai3e1 + bi3e2 e3ei = a3ie1 + b3ie2 i = 1, 2.
(4.20)

Then we have

Re1Re2 = Re2Re1 �⇒ a32 = 0 (4.21)

Re2Re3 = Re3Re2 �⇒ a13a32 + a23b32 = a32 a32b13 + b23b32 = b32 (4.22)

Re1Re3 = Re3Re1 �⇒




a23 = 0 a13 = b23

a13a31 + a23b31 = a31

a31b13 + b23b31 = b31 + a33

(4.23)

(e1, e3, e1) = (e3, e1, e1) �⇒ b23 + b32 = 2a31 (4.24)

(e1, e3, e3) = (e3, e1, e3) �⇒ b2
23 − b23 = 0 b13(2b23 − a31 + b32 − 1) = a33. (4.25)

The relations for other items hold automatically. Using the same method as in section 3, we
can give the classification in table 5.

Case (5) N(A) = (T3). We can choose a basis e1, e2, e3 such that

e1e1 = e1e2 = e2e2 = 0 e2e1 = −e1 e3e3 = e3 + a33e1 + b33e2

eie3 = ai3e1 + bi3e2 e3ei = a3ie1 + b3ie2 i = 1, 2.
(4.26)

Then we have

Re1Re2 = Re2Re1 �⇒ b32 = 0 (4.27)

Re2Re3 = Re3Re2 �⇒ a13a32 + a23b32 = a32 a32b13 + b23b32 = b32 (4.28)

Re1Re3 = Re3Re1 �⇒




b13 = 0 a13 = b23

a13a31 + a23b31 = a31 − b33

a31b13 + b23b31 = b31

(4.29)

(e1, e3, e1) = (e3, e1, e1) �⇒ b31 = 0 (4.30)

(e1, e3, e3) = (e3, e1, e3) �⇒ b2
23 − b23 = b31a23 (4.31)

(e2, e3, e1) = (e3, e2, e1) �⇒ b23 = 0 (4.32)

(e2, e3, e3) = (e3, e2, e3) �⇒ a23(2b23 + a31 − 1) = −a33 − b23a32. (4.33)
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Table 5. The classification and some basic properties of three-dimensional Novikov algebras with
N(A) = (T2).

Characteristic matrix Associativity Lie algebra G(A) Ext. by N(A) Remark

(D1)

(
e2 0 0
0 0 0
0 0 e3

)
Associative Abelian Trivial (T2) ⊕ C

(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
Associative Abelian Non-essential

(D3)

(
e2 0 e1
0 0 e2

e1 + e2 e2 e3

)
Non-associative Isomorphic to (A5) Non-essential

(D4)

(
e2 0 e1
0 0 e2

1
2 e1 0 e3

)
Non-associative Isomorphic to (A13) Non-essential

(D5)

(
e2 0 e1
0 0 e2

1
2 e1 0 e3 + e2

)
Non-associative Isomorphic to (A13) Essential

(D6)

(
e2 0 e1
0 0 e2

le1 (2l − 1)e2 e3

)

l �= 1
2 , 1

Non-associative Isomorphic to (A13) Non-essential

Table 6. The classification and some basic properties of three-dimensional Novikov algebras with
N(A) = (T3).

Characteristic matrix Associativity Lie algebra G(A) Ext. by N(A) Remark

(E1)

( 0 0 0
−e1 0 0

0 0 e3

)
Non-associative Isomorphic to A(6) Trivial (T3) ⊕ C

The relations for other items hold automatically. Hence, equations (4.27)–(4.33) become

a13 = b13 = b31 = b23 = a32 = b32 = 0 a33 = a23(1 − a31) b33 = a31. (4.34)

Let

e′
1 = e1 e′

2 = e2 e′
3 = e3 + a31e2 + a23e1. (4.35)

Then A is isomorphic to table 6.

5. Conclusion and discussion

From the classification of Novikov algebras in dimensions two and three given in the previous
sections, we can obtain the following:

1. all three-dimensional left-symmetric transitive algebras whose sub-adjacent Lie algebras
are nilpotent are Novikov algebras [14];

2. there exists a one-dimensional trivial ideal in any three-dimensional non-semisimple
Novikov algebra;

3. unlike some other special left-symmetric algebras [17–19], according to the classification
of three-dimensional Lie algebras, there exist (transitive) Novikov algebra structures in
any three-dimensional non-semisimple Lie algebra.
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